1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
pub use euclid::Rect;
use crate::{
custom_measurer::LayoutMeasurer,
dom_adapter::{DOMAdapter, NodeAreas, NodeKey},
geometry::{Area, Size2D},
measure_mode::MeasureMode,
node::Node,
prelude::{AlignmentDirection, AreaModel, Torin},
size::Size,
};
/// Measure a Node layout
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_node<Key: NodeKey>(
node_id: Key,
node: &Node,
layout: &mut Torin<Key>,
// Area occupied by it's parent
parent_area: &Area,
// Area that is available to use by the children of the parent
available_parent_area: &Area,
measurer: &mut Option<impl LayoutMeasurer<Key>>,
// Whether to cache the measurements of this Node's children
must_cache_inner_nodes: bool,
// Adapter for the provided DOM
dom_adapter: &mut impl DOMAdapter<Key>,
) -> (bool, NodeAreas) {
let must_run = layout.dirty.contains(&node_id) || layout.results.get(&node_id).is_none();
if must_run {
// 1. Create the initial Node area
let mut area = Rect::new(
available_parent_area.origin,
Size2D::new(node.padding.horizontal(), node.padding.vertical()),
);
// 2. Compute the width and height given the size, the minimum size, the maximum size and margins
area.size.width = node.width.min_max(
area.size.width,
parent_area.size.width,
available_parent_area.size.width,
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
);
area.size.height = node.height.min_max(
area.size.height,
parent_area.size.height,
available_parent_area.size.height,
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
);
// 3. If available, run a custom layout measure function
// This is useful when you use third-party libraries (e.g. rust-skia, cosmic-text) to measure text layouts
// When a Node is measured by a custom measurer function the inner children will be skipped
let measure_inner_children = if let Some(measurer) = measurer {
let custom_area =
measurer.measure(node_id, node, &area, parent_area, available_parent_area);
// 3.1. Compute the width and height again using the new custom area sizes
if let Some(custom_area) = custom_area {
if Size::Inner == node.width {
area.size.width = node.width.min_max(
custom_area.width(),
parent_area.size.width,
available_parent_area.size.width,
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
);
}
if Size::Inner == node.height {
area.size.height = node.height.min_max(
custom_area.height(),
parent_area.size.height,
available_parent_area.size.height,
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
);
}
}
// Do not measure inner children
custom_area.is_none()
} else {
true
};
// 4. Compute the inner area of the Node, which is basically the area inside the margins and paddings
let mut inner_area = {
let mut inner_area = area;
// 4.1. When having an unsized bound we set it to whatever is still available in the parent's area
if Size::Inner == node.width {
inner_area.size.width = node.width.min_max(
available_parent_area.width(),
parent_area.size.width,
available_parent_area.width(),
node.margin.left(),
node.margin.horizontal(),
&node.minimum_width,
&node.maximum_width,
);
}
if Size::Inner == node.height {
inner_area.size.height = node.height.min_max(
available_parent_area.height(),
parent_area.size.height,
available_parent_area.height(),
node.margin.top(),
node.margin.vertical(),
&node.minimum_height,
&node.maximum_height,
);
}
inner_area
.after_gaps(&node.padding)
.after_gaps(&node.margin)
};
let mut inner_sizes = Size2D::default();
if measure_inner_children {
// 5. Create an area containing the available space inside the inner area
let mut available_area = inner_area;
// 5.1. Adjust the available area with the node offsets (mainly used by scrollviews)
available_area.move_with_offsets(&node.offset_x, &node.offset_y);
let mut measurement_mode = MeasureMode::ParentIsNotCached {
area: &mut area,
inner_area: &mut inner_area,
};
// 6. Measure the layout of this Node's children
measure_inner_nodes(
&node_id,
node,
layout,
&mut available_area,
&mut inner_sizes,
measurer,
must_cache_inner_nodes,
&mut measurement_mode,
dom_adapter,
);
}
(
must_cache_inner_nodes,
NodeAreas {
area,
margin: node.margin,
inner_area,
inner_sizes,
},
)
} else {
let areas = layout.get(node_id).unwrap().clone();
let mut inner_sizes = areas.inner_sizes;
let mut available_area = areas.inner_area;
available_area.move_with_offsets(&node.offset_x, &node.offset_y);
let mut measurement_mode = MeasureMode::ParentIsCached {
inner_area: &areas.inner_area,
};
measure_inner_nodes(
&node_id,
node,
layout,
&mut available_area,
&mut inner_sizes,
measurer,
must_cache_inner_nodes,
&mut measurement_mode,
dom_adapter,
);
(false, areas)
}
}
/// Measure the children layouts of a Node
#[allow(clippy::too_many_arguments)]
#[inline(always)]
pub fn measure_inner_nodes<Key: NodeKey>(
parent_node_id: &Key,
parent_node: &Node,
layout: &mut Torin<Key>,
// Area available inside the Node
available_area: &mut Area,
// Accumulated sizes in both axis in the Node
inner_sizes: &mut Size2D,
measurer: &mut Option<impl LayoutMeasurer<Key>>,
// Whether to cache the measurements of this Node's children
must_cache_inner_nodes: bool,
mode: &mut MeasureMode,
// Adapter for the provided DOM
dom_adapter: &mut impl DOMAdapter<Key>,
) {
let mut measure_children = |mode: &mut MeasureMode,
available_area: &mut Area,
inner_sizes: &mut Size2D,
must_cache_inner_nodes: bool| {
let children = dom_adapter.children_of(parent_node_id);
for child_id in children {
let inner_area = *mode.inner_area();
let child_data = dom_adapter.get_node(&child_id).unwrap();
let mut adapted_available_area = *available_area;
if parent_node.cross_alignment.is_not_start() {
// 1. First measure: Cross axis is not aligned
let (_, child_areas) = measure_node(
child_id,
&child_data,
layout,
&inner_area,
available_area,
measurer,
false,
dom_adapter,
);
// 2. Align the Cross axis
adapted_available_area.align_content(
available_area,
&child_areas.area.size,
&parent_node.cross_alignment,
&parent_node.direction,
AlignmentDirection::Cross,
);
}
// 3. Second measure
let (child_revalidated, child_areas) = measure_node(
child_id,
&child_data,
layout,
&inner_area,
&adapted_available_area,
measurer,
must_cache_inner_nodes,
dom_adapter,
);
// Stack the child into its parent
mode.stack_into_node(parent_node, available_area, &child_areas.area, inner_sizes);
// Cache the child layout if it was mutated and inner nodes must be cache
if child_revalidated && must_cache_inner_nodes {
layout.cache_node(child_id, child_areas);
}
}
};
{
// This is no the final measure, hence we make a temporary measurement mode
// so the affected values are not reused by the final measurement
let mut alignment_mode = mode.to_owned();
let mut alignment_mode = alignment_mode.to_mut();
let mut inner_sizes = *inner_sizes;
if parent_node.main_alignment.is_not_start() || parent_node.cross_alignment.is_not_start() {
// 1. First measure: Main axis is not aligned
measure_children(
&mut alignment_mode,
&mut available_area.clone(),
&mut inner_sizes,
false,
);
}
if parent_node.cross_alignment.is_not_start() {
// 2. Adjust the available and inner areas of the Cross axis
alignment_mode.fit_bounds_when_unspecified_and_aligned(
parent_node,
AlignmentDirection::Cross,
available_area,
);
}
if parent_node.main_alignment.is_not_start() {
// 3. Adjust the available and inner areas of the Main axis
alignment_mode.fit_bounds_when_unspecified_and_aligned(
parent_node,
AlignmentDirection::Main,
available_area,
);
// 4. Align the Main axis
available_area.align_content(
alignment_mode.inner_area(),
&inner_sizes,
&parent_node.main_alignment,
&parent_node.direction,
AlignmentDirection::Main,
);
}
}
// 5. Second measure
measure_children(mode, available_area, inner_sizes, must_cache_inner_nodes);
}